Numerical Methods-Lecture VI: Applying Newton's Method

Trevor Gallen

Fall, 2015

Motivation

- We've seen the theory behind Newton's Method
- How can we apply it to Value Function Iteration?
- Solving systems of equations
- Maximization!
- Caveat: we'll linearly interpolate for now.

Monopolistic Competition-I

We might have a system of equations describing agent behavior. Given elasticity of substitution σ, Income I, marginal cost of production ϕ, and fixed cost of entry ν, a monopolistically competitive system's equilibrium is given by:

- Consumption aggregation

$$
\begin{equation*}
C=\left(\int_{0}^{n} c_{i}^{\frac{\sigma-1}{\sigma}} d i\right)^{\frac{\sigma}{\sigma-1}} \tag{1}
\end{equation*}
$$

- Idiosyncratic demand curves:

$$
\begin{equation*}
c_{i}=\frac{l p_{i}^{-\sigma}}{\int_{0}^{n} p_{i}^{1-\sigma} d i} \tag{2}
\end{equation*}
$$

- Aggregate price:

$$
\begin{equation*}
P=\int_{0}^{n}\left(p_{i}^{1-\sigma} d i\right)^{\frac{1}{1-\sigma}} \tag{3}
\end{equation*}
$$

- Profit definition:

$$
\begin{equation*}
\pi_{i}=p_{i} c_{i}-\phi c_{i}-\nu \tag{4}
\end{equation*}
$$

- Zero profit (free entry):

$$
\begin{equation*}
\pi_{i}=0 \tag{5}
\end{equation*}
$$

- Optimal markup:

$$
\begin{equation*}
p_{i}=\frac{\sigma}{\sigma-1} \phi \tag{6}
\end{equation*}
$$

Monopolistic Competition-II

- We won't bother simplifying, though we can in this case.
- We want to solve these six equations as a function of $n, p_{i}, P, c_{i}, C, \pi_{i}$, and we'll assume a symmetric equilibrium.
- To solve, we'll:
- Step 1: Write all FOC's as a vectorized function of those six variables
- Step 2: Write the Jacobian of the vector of FOC's as a function of those six variables
- Step 3: Apply Newton's Method until we converge

Monopolistic Competition-III

For code, see Lecture_6_NewtonsMethod_DixitStiglitz.m

Alternative Use of Newton's Method: Estimation

- Linear regression of the type:

$$
y_{i}=X_{i} \beta+\epsilon_{i}
$$

is easy. (Where y is an $n \times 1, X_{i}$ is an $n \times j, \beta$ is a $j \times 1$, and ϵ_{i} is a $n \times 1$ matrix).

- $\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
- What if we had a slightly different problem? (Nonlinear least squares, for instance).
- Newton's method helps us find a minimum.

Some Data

City	Crack Index	Crime Index
Baltimore	1.184	1405
Boston	3.129	835
Dallas	2.103	675
Detroit	2.057	2123
Indianapolis	0.858	1186
Philadelphia	4.087	1160

Some Data

- Given $\beta=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ we can calculate ϵ_{i} :

$$
\epsilon_{i}=\left[\begin{array}{l}
1.18 \\
3.13 \\
2.10 \\
2.06 \\
0.86 \\
4.09
\end{array}\right]-\left[\begin{array}{cc}
1 & 1405 \\
1 & 835 \\
1 & 675 \\
1 & 2123 \\
1 & 1186 \\
1 & 1160
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- We can try to minimize $\sum \epsilon_{i}^{2}$.

In Matlab

- I assume all the data is already in Y and X as it is listed.

$$
\begin{aligned}
& f=(b e t a) \operatorname{sum}\left((y-X \prime * b e t a) .^{\sim} 2\right) \\
& d 1=[d, 0] \\
& d 2=[0, d] \\
& d 3=[d, d] \\
& f-g r a d=(b e t a)[f([b(1)+d ; b(2)]-f(b)) / d ; \\
& f([b(1) ; b(2)+d]-f(b)) / d] \\
& f _h e s s=(b)[(f(b+d 1)-2 . * f(b)+f(b-d)) / d, \\
& f(b+d 3)-f(b+d 1-d 2)-f(b-d 1+d 2)+f(b-d 3) ; \\
& f(b+d 3)-f(b+d 1-d 2)-f(b-d 1+d 2)+f(b-d 3) ; \\
& f(b+d 2)-2 * f(b)-f(b-d 2)] / d \sim 2
\end{aligned}
$$

In Matlab

For code, see Lecture_6_NewtonsMethod_LinReg.m

Initial Conditions

Step 1

...NEXT STEP

28TH STEP...

LAST STEP!

Note: took about 863 steps to get both gradients to $<10^{-10}$.

